In this paper I'm dealing with questions that arose in studying Leonardo's research of musical instruments. Every kind of instrument sketched by him can be identified with the class of folk instrument or instruments adapted to the needs of performing in the open air, battles, processions and tournaments whose ornamentation Leonardo was given charge of. Among a few dozen of sketches, mostly drawn in a few pages but also dispersed in other manuscripts, in the greater part of them the pictures related to a special hurdy-gurdy mechanism that can easily be recognized. The instrument was named by Leonardo 'viola organista', possibly drawing it from 'organistrum' (or 'performing organum')?

This paper is chiefly concerned with the discussion of how so many details of mechanisms could have been arranged in a voluntary or self-acting bowing device.

The richness of the details designed by Leonardo enable us to give a precise description of what we see as to the matters they could have been the pictures in Leonardo's mind. Some parts, such as various devices for making the 'viola' automatically work—the so-called 'motors'—are casually depicted here and there in Leonardo's manuscripts as follows:

- Cod. Atlantic 93; 368
- Cod. B 50
- Cod. H 28 v, r 45 r; 46 r; 104 v
- Cod. M II 76 r

Fully written descriptions of the devices coming from Leonardo's hand aren't known, apart from a few rather obscure words scattered among some sketches. Therefore, it is at least unclear what Leonardo was expecting in order to play polyphonic music on the 'viola organista' and primarily to convert his imaginations into efficient machineries.

The historical succession of Leonardo's projects about the 'viola organista' hasn't been reconstructed yet.

A few lay-outs, not fully legible, show possible references to more usual hurdy-gurdy (C. At. 586 r.c.) or clavichord (C. At. 586 r.c.) structures. Such machineries, only superficially contrived by Leonardo, are beyond the content of this paper; owing to their evident unreliability it could be that they are just a matter of speculation, even if E. Winternitz, who claimed Leonardo to be 'the inventor' of 'viola organista', argued for a credible trust as to the reliability of these lay-outs (Raccolta Vinciana, XX).

Even if a few 'viola' body shapes were sketched in Leonardo's manuscripts (C. Atl. 93 and 568 r; Cod. H 28 v, r 45 r, 45 v, 46 r and 104 v) further details of only one were effectively developed. The 'exagonal cross-section body' might have been designed to make the 'viola' suitable for a wider compass of tones; in the 'rectangular cross-section body' Leonardo was more explicative. Every mechanical detail of that seems to have been selected among these parts connected together; different geometrical projections show how Leonardo was thinking out 'keys' and their connections with the...
Fig. 2. C. ATL, 568—A: bow mechanism—B: 'Hurdy-gurdy' mechanism for viola organista.

Fig. 3. C. H 45 r.—'Cord' motor and knob mechanism in a square cross-section viola body.

Fig. 4. C. H 28 v.—Octagonal and exagonal cross-section viola body.

Fig. 5. C. ATL, 99—A: key mechanism—B: cord motor—C: harness.

Levers driving the up-and-down motion of the 'pivots'. In most of the pictures, the motors are placed near a parallel-sided and convergent truncated pyramid, which stood upright, showing the mechanism to the players and a downwards-throwing die-bar. Generally, in the instrument, motors (of one or another kind) are present.
levers driving the up-and-down motion of the 'pivots'. In most of the pictures of the 'rectangular cross-section body' Leonardo drew a case near to a parallelepiped and a somewhat convergent truncated pyramid, whose wider basis stood upright, showing the keys facing the players and a downwards protruding handle-bar. Generally, in the instrument case, the motors (of one or another kind) are also present.

In our reconstruction of how the 'viola' (Fig. 7 a, Fig. 8) could have been driven we based ourselves upon (i) some harnesses designed for putting the instrument on by the player, (ii) the details of mechanics in C. Atl. 93 r.b; H 45 r; H 46 r; H 104 v; M II 78 r. The player might have been allowed to drive the 'viola' not only with his hands but also by moving one arm joint, the fingers of both hands being restrained for pressing on the 'keyboard' knobs or levers. In such a case the cumbersomeness and the unwieldiness of the 'viola' would require a rather acrobatic dexterity by the player to be brought into action. Thus we are destined to assign the 'viola' to the popular shows done by 'jongleurs' rather than to the subtly learned profession at the end of the 15th century.

Fig. 5. C. ATL. 93—A: key mechanism—B: double cord motor—C: harness

Fig. 6. C. H 28 r. —'Gear' motors—A: with double disk wheel—B: with disk wheel section gear—C: handle bar

Fig. 7. C. B 50.—Auxiliary mechanism for the viola organista—double escapement clock work moving the bow
Fig. 7a. Viola organista reconstruction (C Atl. 93)

Fig. 8. Viola organista reconstruction (C. H 28 v.)

The 'motors' should have been fitted so that the 'continuous bow' could be driven on two pulleys, one of them operating as a driving wheel, set on the 'motor' axle (Fig. 9 A; Fig. 9 B; Fig. 9 C). As regards the bowing (how the 'bow' must have been dragged) Leonardo stated that it rubs according to the way 'the player's right arm runs from key to key performing divisions' and he so calculated confusedly the amount of a bowing length in one arm's length ('braccio', or about two feet): 'the driving wheel will turn once what is one third of an arm's length and
Marco Tiella
155

Fig. 9b. C.H 46 r.—‘Cord’ motor

Fig. 9c. ‘Cord’ motor and knob mechanism—
C.H 45 r.
1. Motor shaft
2. Driving wheel
3. Reel
4. Frame
5. Seat
6. Handle bar
7. String
8. Continuous bow
9. Rocker arm
10. Knob

...
Leonardo's aim was never fulfilled by the former mechanical alternative, no clear details of it having been yet recognized in the manuscripts. This way of bowing the 'viola' should have been entangled with an extraordinary mechanical complexity of any device designed for the voluntary rubbing of the bow against the strings by means of a 'drive'. Nothing is evident about how to finally arrange the motion work for a common bow mechanically operated. The latter mechanism took up Leonardo's mind more attentively and many of the details of the mechanisms were so precisely drawn that we were able to reconstruct a few of the simplest of them (C. Atl. 93 r.b), Fig. 10. Therefore one might assume that such a refinement in drawing them give us proof of Leonardo's acquaintance with something actually like 'viva organista' mechanisms—as E. Winternitz does believe. It must be remarked upon the 'prime motor' automation described by Winternitz that the reliability of Leonardo's designs is hardly tenable. In contrast with the mental linking of supposing to be in front of graphical fancies Leonardo was often caught up in, Winternitz credited his muddled sketches of 'prime motor' with the power of working. Like a 'clock work'
warming the viola should be looked up Leonardo's mind with precise details of the bow against the a 'drive'. Nothing is evident that the motion work mechanically operated. The sketches of Leonardo's acquaintance actually like a 'viola organ'-as E. Winternitz does remark upon the 'prime motor' described by Winternitz that Winternitz's sketches of 'prime motor' boxing. Like a 'clock work'.

(C. H 28 r.) (Fig. 11) such a 'prime motor' would have caused to run in cascade a few springs (encased in boxes) and then pulling the cords bound to them and wound around corresponding 'fusées'. In that way, the player would have been in the position of not taking care of moving the 'bow' and focusing on just his musical performance. That kind of 'clock work' would have been set in the primary axle of a gear, whose secondary axle would have also been set into a little 'cyliner' or a crown wheel. Toothlike projections on either side of its broad rim (shown in the drawing) and working a double as well as an opposite escape mechanism, would have imparted the constant slow motion that the 'unending bow' need rather than create a continuous swinging back and forth of the verges. Both the verges bearing a toothed wheel, which engaged a drum on its opposite sides, would have caused the driving wheel to drag the 'continuous bow' and also to rub the selected strings.

Other sketches (C. B 50; M II 76 r) deal with more factual ways of getting the mechanical transmission to work. To overcome the failure of the friction requested to avoid idle rods or wheels, Leonardo searches into interlocked gears, joined together in order to get a certain 'bow' section to rub back and forth. One gear is built of a toothed disk wheel section engaging a spur wheel (Fig. 12 A), whose larger disk coincides with one of the pulleys lifting the 'continuous bow' (C. M II 76 r); in another (C. H 28 r on the right) (Fig. 12 B) the disk wheel section is operated by a handle-bar passing through the ring set on the extremity of the pinion looking into a double disk gear wheel (in this drawing, sketches of the two different versions are bound together with a figure of what Winternitz imagined to be a 'bow speed regulator'). On the border of page 'H 104 v' a sketch depicts a toothed wheel possibly moved by crank-connected arms; but close to that we see a 'viola' body furnished with an idle double-cord motor.

Undoubtedly, the most reliable mechanisms for the 'viola' designed by Leonardo were those about how the strings could be selected and
As far as I know, only E. Winternitz wrote about Leonardo’s musical instruments and attempted to explain what the drawings signify as to the actual ways of working the instruments. We have explanations for more than one of Winternitz’s doubts in stating what the drawings really can supply, for instance, about how to connect the ‘prime motor’ with the ‘continuous bow’ and how to understand the ‘viola organista’ shape as to its suitability in playing mode. Having reconstructed the ‘clock work’ (C. H 28 r) we can state that Leonardo’s words can be referred to this mechanism; there is no means to avoid the ‘swinging back’ of each pallet after the tooth releases it. Of course, one cannot always reverse the function of a mechanism; the matter in this case is that the gear cannot regulate the motion of the verges bearing the pallets (which are connected with a ‘continuous bow’ driving wheel) but, on the contrary, this kind of clock escape mechanism (viz. the complete whole of ‘continuous bow’ gears) regulates the ‘prime motor’ ‘revolving speed’! The only definite effort done by the escape would have been that of getting a ‘continuous bow’ back and forth swinging as wide as the teeth are apart and be scanned on crown wheel sides; that is, something like a very close bow trembling.

The ‘motors’ working principle that can be deduced from Leonardo’s drawings are of two kinds: (i) how to put in motion the ‘continuous bow’ pivot by means of a transmission belt (really a section of cord), (ii) by means of gears.

The alternative motion of the ‘motor’ was generated by moving back and forth a ‘handle-bar’ protruding from the case—usually through the side opposite to that on which ‘keys’ or ‘knobs’ are legible. The machinery transferring an alternative motion into an alternative rotation could have been materialized by a simple section of chord spirally wound around a section of a cylindrical rod (set on the axle of the ‘motor’) and hinged to both the lateral sections of the frame, this frame being firmly connected with the ‘handle-bar’. If one end of the rod section axle has its seat (race) in the upper extremity of the ‘handle-bar’ and the other end is set in the wheel driving the ‘continuous bow’, the rod section—when rotating, being dragged by the spiral cord—puts the ‘bow’ in motion.

What makes the machinery work is the friction between cord and wood and hair thread and wood. Corresponding friction coefficients must be as great in the inverse ratio as the wheels and rod diameters are, otherwise only the larger wheel can transfer the motion to the smaller one (not vice versa). In fact we can sort out a set of drawn details to build up hypothetically Leonardo’s mental attitude in looking through such a handicap. If we are correct in relating together a few sketched routes (viz. belt dispositions) where some pulleys are variously orientated, we are enabled to suppose that Leonardo was entangled in getting through the problem of how to effectively make the hair thread move. He also had to find actually by which means the hair thread route could go on two perpendicular plains. Unfortunately, in no case do the sketches give us proof of his awareness about friction consequences on driving belt devices as the hair thread passes firstly on a driving rod smaller than the wheels conducting the bowing section also. The old empiric misunderstanding between ‘speed’ and ‘force’ constrained Leonardo and made him believe in the possibility of transferring the ‘handle-bar’ swinging to a wheel so large, that the hair thread, driven by it, could rub the strings at the required bowing speed and by the usual hair section length. By the application of a gear to the ‘motor’ (instead of a cord transmission) only the first gap could be over-ridden. The same thing is valid for the other ingenious but scarcely efficient way of transferring the ‘handle-bar’ swinging into ‘bow’ rubbing through a doubled cord transmission. The hair thread is driven by a large wheel pivoted on a rod whose ends protrude from both wheel sides. The primary cord transmission should operate as that of a ‘frame motor’. Both the cord ends being hinged on one of the opposite rod sections (protruding from the wheel) one end of the cord is wound clockwise on one rod section and the other cord end anticlockwise.
on the opposite rod section. In this first cord connection the ‘handle-bar’ makes one of the
cord ends unwind on the corresponding rod section whereas the other cord end is being
wound; therefore a reciprocating motion would have been transmitted to the wheel and
thereby to the ‘bow’. If the wheel could succeed in dragging the hair thread, such a
way of winding and unwinding in the ‘motor’ enabled the ‘handle-bar’ operator to get a
probable imitation of the usual type of bowing. Will the friction mechanics laws once again
keep the machinery from operating? According to our attempts to put motor reconstruc-
tions into action, it does, unless the cord transmission will be replaced by a sprocket chain.

Bibliography
E. Magni-Dufflocq, Da Vinci’s Music, London 1957
A. Marinoni, I rebus di Leonardo da Vinci, Firenze
1954
G. Panconcelli-Caizia, Leonardo als Phonetiker,
Hamburg 1943
J. P. Richter, The literary works of Leonardo da Vinci,
London 1883
M. Tiella, Gli strumenti musicali disegnati da Leona-
dodo, in: “Leonardo e gli spettacoli del suo tempo”, a
cura di M. Mazzocchi Doglio, G. Tintori, M. Pado-
van, M. Tiella, Milano 1983
M. Tiella, Gli strumenti musicali all’epoca di Leonar-
do nell’italia del Nord, in: “Leonardo e gli
spettacoli del suo tempo”, Milano 1983
E. Winternitz, Keyboards for wind-instruments in-
vented by Leonardo da Vinci, in “Raccolta Vincian-
a” XX, Milano 1964, 69; Id. Viola Organista, XX, 1;
Id. Drums, XX, 49
E. Winternitz, Strange musical instruments in the
Madrid notebook of Leonardo da Vinci, in: “Met-
ropolitan Museum Journal”, II, N.Y. 1965
E. Winternitz, Anatomy the teacher, in: “Proceedings
of the Am. Philosophical Society”, III, 4, 1967
E. Winternitz, La musica nei “Paragone” di Leonardo
da Vinci in: “Studi Musicali”, 1972
E. Winternitz, Leonardo da Vinci and Music, The un-
known Leonardo, N.Y., 1974
E. Winternitz, Leonardo da Vinci as Musician, Yale
University Press, 1982
M. Tiella, Leonardo’s Designs for Musical Instru-
1986
Studia instrumentorum musicae popularis IX

Editor: Erich Stockmann

Report from the 9th International Meeting of the International Council for Traditional Music's Study Group on Folk Musical Instruments in Orta San Giulio, Italy 1986